skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O’Connell, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including theDrosophilawing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth inDrosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth. 
    more » « less
  2. Abstract Spartina alterniflorahas a distinct flood‐adapted morphology, and its physiological responses are likely to vary with differences in tidal submergence. To understand these responses, we examined the impacts of tidal inundation on the efficiency of Photosystem II (φPSII) photochemistry and leaf‐level photosynthesis at different canopy heights through a combination of in situ chlorophyll fluorescence (ChlF), incident photosynthetically active radiation, and tide levels. Our result showed small declines (7%–8.3%) in φPSII for air‐exposed leaves when the bottom canopies were tidally submerged. Submerged leaves produced large reductions (30.3%–41%) in φPSII. Our results suggest that when submerged, PSII reaction centers inS. alternifloraleaves are still active and able to transfer electrons, but only at ∼20% of the typical daily rate. We attribute this reduction in φPSII to the decrease in the fraction of “open” PSII reaction centers (10% of the total) and the stomatal conductance rate caused by the tidal submergence. To our knowledge, this flooding induced leaf‐level reduction of φPSII forS. alterniflorain field settings has not been reported before. Our findings suggest that canopy‐level φPSII is dependent on the proportion of submerged versus emerged leaves and highlight the complexities involved in estimating the photosynthetic efficiency of tidal marshes. 
    more » « less
  3. Summary Spatiotemporal patterns ofSpartina alterniflorabelowground biomass (BGB) are important for evaluating salt marsh resiliency. To solve this, we created the BERM (Belowground Ecosystem Resiliency Model), which estimates monthly BGB (30‐m spatial resolution) from freely available data such as Landsat‐8 and Daymet climate summaries.Our modeling framework relied on extreme gradient boosting, and used field observations from four Georgia salt marshes as ground‐truth data. Model predictors included estimated tidal inundation, elevation, leaf area index, foliar nitrogen, chlorophyll, surface temperature, phenology, and climate data. The final model included 33 variables, and the most important variables were elevation, vapor pressure from the previous four months, Normalized Difference Vegetation Index (NDVI) from the previous five months, and inundation.Root mean squared error for BGB from testing data was 313 g m−2(11% of the field data range), explained variance (R2) was 0.62–0.77. Testing data results were unbiased across BGB values and were positively correlated with ground‐truth data across all sites and years (r = 0.56–0.82 and 0.45–0.95, respectively).BERM can estimate BGB withinSpartina alterniflorasalt marshes where environmental parameters are within the training data range, and can be readily extended through a reproducible workflow. This provides a powerful approach for evaluating spatiotemporal BGB and associated ecosystem function. 
    more » « less
  4. Abstract Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. 
    more » « less
  5. Abstract Light use efficiency (LUE) of salt marshes has not been well studied but is central to production efficiency models (PEMs) used for estimating gross primary production (GPP). Salt marshes are typically dominated by a species monoculture, resulting in large areas with distinct morphology and physiology. We measured eddy covariance atmospheric CO2fluxes for two marshes dominated by a different species:Juncus roemerianusin Mississippi andSpartina alterniflorain Georgia. LUE for theJuncusmarsh (mean = 0.160 ± 0.004 g C mol−1photon), reported here for the first time, was on average similar to theSpartinamarsh (mean = 0.164 ± 0.003 g C mol−1photon). However,JuncusLUE had a greater range (0.073–0.49 g C mol−1photon) and higher variability (15.2%) than theSpartinamarsh (range: 0.035–0.36 g C mol−1photon; variability: 12.7%). We compared the responses of LUE across six environmental gradients.JuncusLUE was predominantly driven by cloudiness, photosynthetically active radiation (PAR), soil temperature, water table, and vapor pressure deficit.SpartinaLUE was driven by water table, air temperature, and cloudiness. We also tested how the definition of LUE (incident PAR vs. absorbed PAR) affected the magnitude of LUE and its response. We found LUE estimations using incident PAR underestimated LUE and masked day‐to‐day variability. Our findings suggest that salt marsh LUE parametrization should be species‐specific due to plant morphology and physiology and their geographic context. These findings can be used to improve PEMs for modeling blue carbon productivity. 
    more » « less